Spring 2010 Math 245-2 Exam 2 Solutions

One quarter of students scored 58-68, one quarter scored 68-73, one quarter scored 73-78,
one quarter scored 78-94. In particular, the median was 73, the low was 58, and the high
was 94.

Problem 1. Carefully define each of the following terms:

a. constructive proof
An existential proof is constructive if it explicitly produces the desired ob-
ject (or gives an algorithm to produce it).

b. floor
The floor of real number z is the largest integer n with n < z.

c. odd
A number z is odd if there is an integer n with » = 2n + 1.

d. irreducible
A number is irreducible if it cannot be factored into two nonunits.

Problem 2. Prove that /5 is irrational.

Argue by way of contradiction. If /5 were rational, there would be integers p, ¢
with V5 = §. We may assume without loss of generality that p, ¢ have no common
factors. Squaring both sides and multiplying by ¢> we get 5¢*> = p?>. Hence 5|p - p.
Since 5 is prime, 5|p or 5|p, so either way 5|p. Hence there is some integer s with
5s = p; we plug in to get 5¢° = p? = (5s)? = 5?s%. Cancelling, we get ¢*> = 5s%, so 5|q-q.
Since 5 is prime, 5|q as earlier. Hence 5 is a common factor of p, ¢, a contradiction.

Problem 3. Use the Euclidean algorithm to first find ged(21, 15), then to express ged(21, 15)
as a linear combination of 15 and 21.

21=1-15+6, 15=2-6+3, 6 =2-3+ 0. Hence gcd(21,15) = 3. Working back-
wards, 3=15-2-6=15—-2(21-1-15)=3-15—2-21.

Problem 4. Prove that, in the reals, the product of an irrational and a nonzero rational is
irrational.

Let x be irrational and y be a nonzero rational. Since y is rational there are
integers m,n with n # 0 where y = . Note that m # 0 since y # 0. Argue by way
of contradiction; we assume that xy is in fact rational. Hence there are integers

¢,d with d # 0 where ry = 5. But now 27 = ¢, so v = 7-. This expresses = as

a ratio of two integers, and dm # 0. Hence z is rational, but this is a contradiction.



Problem 5. Prove or disprove that, Vo € R, |—x] = —|z].
This is false. Take x = 0.5 (many other counterexamples are possible). |—x]| = —1,
while —|x| = 0.

Problem 6. Prove or disprove that, Vo € R, |—x] = —[z].

SOLUTION 1: Proof by cases. If x is an integer, both sides equal —x. If x = n+y,
where 0 < y < 1 and n is an integer, then |—z| = |-n—y| = -n+|-y|] = -—n—1.
On the other hand, —[z] =—-[n+y|=-—n—[y|=—n—1

SOLUTION 2: Set a = |—z],b = —[z]|. By the definition of floor, —z—1 < a < —x.
By the definition of ceiling, * < [2] < x+ 1, hence —z > —[z| =b > —x — 1. Hence
both a,b are integers in the interval (—x — 1, —z|; but this interval has only one
integer so a = b.

Problem 7. Prove or disprove that, Vo € R, —|z| <2 <|z|.

Proof by cases. If x > 0, then |z| = z. Certainly then |z| = z > z, and also
—lz| <0<z, so —|z| <z < |z|. On the other hand, if z < 0, then |z| = —z. Then
—|z| =2 <z, and also |z| > 0>z so —|z| <z < |z|.

Problem 8. Consider the sequence given by a; = 1,a,41 = 3a, + 3" (for n > 1). Prove that
a, = n3" 1.

Let S(n) denote the proposition a, = n3""'. Proof by induction on n. Base
case, n = 1, a; = 1 = 1-3° Now, assume S(n), a, = n3"'. By the recurrence,
Uni1 = 3a, + 3" =3(n3" ')+ 3" =n3" + 3" = (n+ 1)3". This is S(n + 1), hence we’ve
proved S(n) — S(n+1).

Problem 9. Prove that (33)" = (3 3. 1)1
3

Let S(n) denote the pr0p0s1t10n (34)" = (3 . "). Proof by induction on n.
Base case, n = 1, (31)' = (31) = (301 30). We now assume S(n); that is,
n n n— n+1 n n— n+l gpngn—1 n
(63) :(30 n33"1)' Nowa(gzl),)Jr =(53)(@3)" = (%é)(?’o n33"1):(30 333n+1+3 ):

(37:1 W;?f’”) This proves S(n + 1).

Problem 10. For an arbitrary set of numbers S, recall that x is a unit if there is some y such
that xy = 1. Prove that the product of two units is a unit.

Suppose that z, 2’ are any two units. We want to prove that their product zz' is
also a unit. Because z,2’ are units, there are numbers y,y where xy = 1 = 2/y/.
Now, set z = 3y, a number. We have (z2')z = z2'y'y = z(2'y )y = z(1)y = zy = 1.
Hence there is a number (namely z) such that (z2')z = 1, so xz2’ is a unit.



