
Spring 2010 Math 245-2 Exam 2 Solutions

One quarter of students scored 58-68, one quarter scored 68-73, one quarter scored 73-78,
one quarter scored 78-94. In particular, the median was 73, the low was 58, and the high
was 94.

Problem 1. Carefully define each of the following terms:

a. constructive proof
An existential proof is constructive if it explicitly produces the desired ob-
ject (or gives an algorithm to produce it).

b. floor
The floor of real number x is the largest integer n with n ≤ x.

c. odd
A number x is odd if there is an integer n with x = 2n + 1.

d. irreducible
A number is irreducible if it cannot be factored into two nonunits.

Problem 2. Prove that
√

5 is irrational.
Argue by way of contradiction. If

√
5 were rational, there would be integers p, q

with
√

5 = p
q
. We may assume without loss of generality that p, q have no common

factors. Squaring both sides and multiplying by q2 we get 5q2 = p2. Hence 5|p · p.
Since 5 is prime, 5|p or 5|p, so either way 5|p. Hence there is some integer s with
5s = p; we plug in to get 5q2 = p2 = (5s)2 = 52s2. Cancelling, we get q2 = 5s2, so 5|q·q.
Since 5 is prime, 5|q as earlier. Hence 5 is a common factor of p, q, a contradiction.

Problem 3. Use the Euclidean algorithm to first find gcd(21, 15), then to express gcd(21, 15)
as a linear combination of 15 and 21.
21 = 1 · 15 + 6, 15 = 2 · 6 + 3, 6 = 2 · 3 + 0. Hence gcd(21,15) = 3. Working back-
wards, 3 = 15− 2 · 6 = 15− 2(21− 1 · 15) = 3 · 15− 2 · 21.

Problem 4. Prove that, in the reals, the product of an irrational and a nonzero rational is
irrational.
Let x be irrational and y be a nonzero rational. Since y is rational there are
integers m, n with n 6= 0 where y = m

n
. Note that m 6= 0 since y 6= 0. Argue by way

of contradiction; we assume that xy is in fact rational. Hence there are integers
c, d with d 6= 0 where xy = c

d
. But now xm

n
= c

d
, so x = cn

dm
. This expresses x as

a ratio of two integers, and dm 6= 0. Hence x is rational, but this is a contradiction.
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Problem 5. Prove or disprove that, ∀x ∈ R, b−xc = −bxc.
This is false. Take x = 0.5 (many other counterexamples are possible). b−xc = −1,
while −bxc = 0.

Problem 6. Prove or disprove that, ∀x ∈ R, b−xc = −dxe.
SOLUTION 1: Proof by cases. If x is an integer, both sides equal −x. If x = n+y,
where 0 < y < 1 and n is an integer, then b−xc = b−n − yc = −n + b−yc = −n − 1.
On the other hand, −dxe = −dn + ye = −n− dye = −n− 1.

SOLUTION 2: Set a = b−xc, b = −dxe. By the definition of floor, −x−1 < a ≤ −x.
By the definition of ceiling, x ≤ dxe < x + 1, hence −x ≥ −dxe = b > −x− 1. Hence
both a, b are integers in the interval (−x − 1,−x]; but this interval has only one
integer so a = b.

Problem 7. Prove or disprove that, ∀x ∈ R, −|x| ≤ x ≤ |x|.
Proof by cases. If x ≥ 0, then |x| = x. Certainly then |x| = x ≥ x, and also
−|x| ≤ 0 ≤ x, so −|x| ≤ x ≤ |x|. On the other hand, if x < 0, then |x| = −x. Then
−|x| = x ≤ x, and also |x| > 0 > x so −|x| ≤ x ≤ |x|.

Problem 8. Consider the sequence given by a1 = 1, an+1 = 3an + 3n (for n ≥ 1). Prove that
an = n3n−1.
Let S(n) denote the proposition an = n3n−1. Proof by induction on n. Base
case, n = 1, a1 = 1 = 1 · 30. Now, assume S(n), an = n3n−1. By the recurrence,
an+1 = 3an + 3n = 3(n3n−1) + 3n = n3n + 3n = (n + 1)3n. This is S(n + 1), hence we’ve
proved S(n) → S(n + 1).

Problem 9. Prove that ( 3 1
0 3 )n =

(
3n n3n−1

0 3n

)
.

Let S(n) denote the proposition ( 3 1
0 3 )n =

(
3n n3n−1

0 3n

)
. Proof by induction on n.

Base case, n = 1, ( 3 1
0 3 )1 = ( 3 1

0 3 ) =
(

31 1·30

0 31

)
. We now assume S(n); that is,

( 3 1
0 3 )n =

(
3n n3n−1

0 3n

)
. Now, ( 3 1

0 3 )n+1 = ( 3 1
0 3 ) ( 3 1

0 3 )n = ( 3 1
0 3 )

(
3n n3n−1

0 3n

)
=

(
3n+1 3n3n−1+3n

0 3n+1

)
=(

3n+1 (n+1)3n

0 3n+1

)
. This proves S(n + 1).

Problem 10. For an arbitrary set of numbers S, recall that x is a unit if there is some y such
that xy = 1. Prove that the product of two units is a unit.
Suppose that x, x′ are any two units. We want to prove that their product xx′ is
also a unit. Because x, x′ are units, there are numbers y, y′ where xy = 1 = x′y′.
Now, set z = y′y, a number. We have (xx′)z = xx′y′y = x(x′y′)y = x(1)y = xy = 1.
Hence there is a number (namely z) such that (xx′)z = 1, so xx′ is a unit.
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