Spring 2010 Math 245-2 Exam 2 Solutions

One quarter of students scored 58-68, one quarter scored 68-73, one quarter scored 73-78, one quarter scored 78-94. In particular, the median was 73, the low was 58, and the high was 94.

Problem 1. Carefully define each of the following terms:

a. constructive proof

An existential proof is constructive if it explicitly produces the desired object (or gives an algorithm to produce it).

b. floor

The floor of real number x is the largest integer n with $n \leq x$.

 $c. \ odd$

A number x is odd if there is an integer n with x = 2n + 1.

d. irreducible

A number is irreducible if it cannot be factored into two nonunits.

Problem 2. Prove that $\sqrt{5}$ is irrational.

Argue by way of contradiction. If $\sqrt{5}$ were rational, there would be integers p, q with $\sqrt{5} = \frac{p}{q}$. We may assume without loss of generality that p, q have no common factors. Squaring both sides and multiplying by q^2 we get $5q^2 = p^2$. Hence $5|p \cdot p$. Since 5 is prime, 5|p or 5|p, so either way 5|p. Hence there is some integer s with 5s = p; we plug in to get $5q^2 = p^2 = (5s)^2 = 5^2s^2$. Cancelling, we get $q^2 = 5s^2$, so $5|q \cdot q$. Since 5 is prime, 5|q as earlier. Hence 5 is a common factor of p, q, a contradiction.

Problem 3. Use the Euclidean algorithm to first find gcd(21, 15), then to express gcd(21, 15) as a linear combination of 15 and 21.

 $21 = 1 \cdot 15 + 6$, $15 = 2 \cdot 6 + 3$, $6 = 2 \cdot 3 + 0$. Hence gcd(21, 15) = 3. Working backwards, $3 = 15 - 2 \cdot 6 = 15 - 2(21 - 1 \cdot 15) = 3 \cdot 15 - 2 \cdot 21$.

Problem 4. Prove that, in the reals, the product of an irrational and a nonzero rational is irrational.

Let x be irrational and y be a nonzero rational. Since y is rational there are integers m, n with $n \neq 0$ where $y = \frac{m}{n}$. Note that $m \neq 0$ since $y \neq 0$. Argue by way of contradiction; we assume that xy is in fact rational. Hence there are integers c, d with $d \neq 0$ where $xy = \frac{c}{d}$. But now $x\frac{m}{n} = \frac{c}{d}$, so $x = \frac{cn}{dm}$. This expresses x as a ratio of two integers, and $dm \neq 0$. Hence x is rational, but this is a contradiction.

Problem 5. Prove or disprove that, $\forall x \in \mathbb{R}, \lfloor -x \rfloor = -\lfloor x \rfloor$. This is false. Take $\mathbf{x} = 0.5$ (many other counterexamples are possible). $\lfloor -\mathbf{x} \rfloor = -1$, while $-\lfloor \mathbf{x} \rfloor = 0$.

Problem 6. Prove or disprove that, $\forall x \in \mathbb{R}, \lfloor -x \rfloor = -\lceil x \rceil$. SOLUTION 1: Proof by cases. If x is an integer, both sides equal -x. If x = n+y, where 0 < y < 1 and n is an integer, then $\lfloor -x \rfloor = \lfloor -n - y \rfloor = -n + \lfloor -y \rfloor = -n - 1$. On the other hand, $-\lceil x \rceil = -\lceil n+y \rceil = -n - \lceil y \rceil = -n - 1$.

SOLUTION 2: Set $a = \lfloor -x \rfloor$, $b = -\lceil x \rceil$. By the definition of floor, $-x - 1 < a \le -x$. By the definition of ceiling, $x \le \lceil x \rceil < x + 1$, hence $-x \ge -\lceil x \rceil = b > -x - 1$. Hence both a, b are integers in the interval (-x - 1, -x]; but this interval has only one integer so a = b.

Problem 7. Prove or disprove that, $\forall x \in \mathbb{R}, -|x| \le x \le |x|$. **Proof by cases.** If $x \ge 0$, then |x| = x. Certainly then $|x| = x \ge x$, and also $-|x| \le 0 \le x$, so $-|x| \le x \le |x|$. On the other hand, if x < 0, then |x| = -x. Then $-|x| = x \le x$, and also |x| > 0 > x so $-|x| \le x \le |x|$.

Problem 8. Consider the sequence given by $a_1 = 1$, $a_{n+1} = 3a_n + 3^n$ (for $n \ge 1$). Prove that $a_n = n3^{n-1}$.

Let S(n) denote the proposition $a_n = n3^{n-1}$. Proof by induction on n. Base case, n = 1, $a_1 = 1 = 1 \cdot 3^0$. Now, assume S(n), $a_n = n3^{n-1}$. By the recurrence, $a_{n+1} = 3a_n + 3^n = 3(n3^{n-1}) + 3^n = n3^n + 3^n = (n+1)3^n$. This is S(n+1), hence we've proved $S(n) \to S(n+1)$.

Problem 9. Prove that $\binom{3}{0} \frac{1}{3}^n = \binom{3^n}{0} \frac{n3^{n-1}}{3^n}$. Let S(n) denote the proposition $\binom{3}{0} \frac{1}{3}^n = \binom{3^n}{0} \frac{n3^{n-1}}{3^n}$. Proof by induction on n. Base case, n = 1, $\binom{3}{0} \frac{1}{3}^1 = \binom{3}{0} \frac{1}{3} = \binom{3^1}{0} \frac{1\cdot 3^0}{3^1}$. We now assume S(n); that is, $\binom{3}{0} \frac{1}{3}^n = \binom{3^n}{0} \frac{n3^{n-1}}{3^n}$. Now, $\binom{3}{0} \frac{1}{3}^{n+1} = \binom{3}{0} \frac{1}{3} \binom{3}{0} \frac{3^1}{3}^n = \binom{3^n}{0} \frac{3^{n+1}}{3^n} = \binom{3^{n+1}}{0} \frac{3^{n+1}}{3^{n+1}}$. $\binom{3^{n+1}}{0} \frac{(n+1)3^n}{3^{n+1}}$. This proves S(n+1).

Problem 10. For an arbitrary set of numbers S, recall that x is a *unit* if there is some y such that xy = 1. Prove that the product of two units is a unit.

Suppose that x, x' are any two units. We want to prove that their product xx' is also a unit. Because x, x' are units, there are numbers y, y' where xy = 1 = x'y'. Now, set z = y'y, a number. We have (xx')z = xx'y'y = x(x'y')y = x(1)y = xy = 1. Hence there is a number (namely z) such that (xx')z = 1, so xx' is a unit.