Spring 2010 Math 245-2 Exam 2 Solutions

One quarter of students scored 58-68, one quarter scored 68-73, one quarter scored 73-78, one quarter scored $78-94$. In particular, the median was 73 , the low was 58 , and the high was 94 .

Problem 1. Carefully define each of the following terms:
a. constructive proof

An existential proof is constructive if it explicitly produces the desired object (or gives an algorithm to produce it).
b. floor

The floor of real number x is the largest integer n with $n \leq x$.
c. odd

A number x is odd if there is an integer n with $x=2 n+1$.
d. irreducible

A number is irreducible if it cannot be factored into two nonunits.
Problem 2. Prove that $\sqrt{5}$ is irrational.
Argue by way of contradiction. If $\sqrt{5}$ were rational, there would be integers p, q with $\sqrt{5}=\frac{p}{q}$. We may assume without loss of generality that p, q have no common factors. Squaring both sides and multiplying by q^{2} we get $5 q^{2}=p^{2}$. Hence $5 \mid p \cdot p$. Since 5 is prime, $5 \mid p$ or $5 \mid p$, so either way $5 \mid p$. Hence there is some integer s with $5 s=p$; we plug in to get $5 q^{2}=p^{2}=(5 s)^{2}=5^{2} s^{2}$. Cancelling, we get $q^{2}=5 s^{2}$, so $5 \mid q \cdot q$. Since 5 is prime, $5 \mid q$ as earlier. Hence 5 is a common factor of p, q, a contradiction.

Problem 3. Use the Euclidean algorithm to first find $\operatorname{gcd}(21,15)$, then to express $\operatorname{gcd}(21,15)$ as a linear combination of 15 and 21 .
$21=1 \cdot 15+6,15=2 \cdot 6+3,6=2 \cdot 3+0$. Hence $\operatorname{gcd}(21,15)=3$. Working backwards, $3=15-2 \cdot 6=15-2(21-1 \cdot 15)=3 \cdot 15-2 \cdot 21$.

Problem 4. Prove that, in the reals, the product of an irrational and a nonzero rational is irrational.
Let x be irrational and y be a nonzero rational. Since y is rational there are integers m, n with $n \neq 0$ where $y=\frac{m}{n}$. Note that $m \neq 0$ since $y \neq 0$. Argue by way of contradiction; we assume that $x y$ is in fact rational. Hence there are integers c, d with $d \neq 0$ where $x y=\frac{c}{d}$. But now $x \frac{m}{n}=\frac{c}{d}$, so $x=\frac{c n}{d m}$. This expresses x as a ratio of two integers, and $d m \neq 0$. Hence x is rational, but this is a contradiction.

Problem 5. Prove or disprove that, $\forall x \in \mathbb{R},\lfloor-x\rfloor=-\lfloor x\rfloor$.
This is false. Take $x=0.5$ (many other counterexamples are possible). $\lfloor-x\rfloor=-1$, while $-\lfloor x\rfloor=0$.

Problem 6. Prove or disprove that, $\forall x \in \mathbb{R},\lfloor-x\rfloor=-\lceil x\rceil$.
SOLUTION 1: Proof by cases. If x is an integer, both sides equal $-x$. If $x=n+y$, where $0<y<1$ and n is an integer, then $\lfloor-x\rfloor=\lfloor-n-y\rfloor=-n+\lfloor-y\rfloor=-n-1$. On the other hand, $-\lceil x\rceil=-\lceil n+y\rceil=-n-\lceil y\rceil=-n-1$.

SOLUTION 2: Set $a=\lfloor-x\rfloor, b=-\lceil x\rceil$. By the definition of floor, $-x-1<a \leq-x$. By the definition of ceiling, $x \leq\lceil x\rceil<x+1$, hence $-x \geq-\lceil x\rceil=b>-x-1$. Hence both a, b are integers in the interval $(-x-1,-x]$; but this interval has only one integer so $a=b$.

Problem 7. Prove or disprove that, $\forall x \in \mathbb{R},-|x| \leq x \leq|x|$.
Proof by cases. If $x \geq 0$, then $|x|=x$. Certainly then $|x|=x \geq x$, and also $-|x| \leq 0 \leq x$, so $-|x| \leq x \leq|x|$. On the other hand, if $x<0$, then $|x|=-x$. Then $-|x|=x \leq x$, and also $|x|>0>x$ so $-|x| \leq x \leq|x|$.

Problem 8. Consider the sequence given by $a_{1}=1, a_{n+1}=3 a_{n}+3^{n}$ (for $n \geq 1$). Prove that $a_{n}=n 3^{n-1}$.
Let $S(n)$ denote the proposition $a_{n}=n 3^{n-1}$. Proof by induction on n. Base case, $n=1, a_{1}=1=1 \cdot 3^{0}$. Now, assume $S(n), a_{n}=n 3^{n-1}$. By the recurrence, $a_{n+1}=3 a_{n}+3^{n}=3\left(n 3^{n-1}\right)+3^{n}=n 3^{n}+3^{n}=(n+1) 3^{n}$. This is $S(n+1)$, hence we've proved $S(n) \rightarrow S(n+1)$.

Problem 9. Prove that $\left(\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right)^{n}=\left(\begin{array}{cc}3^{n} n 3^{n-1} \\ 0 & 3^{n}\end{array}\right)$.
Let $S(n)$ denote the proposition $\left(\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right)^{n}=\left(\begin{array}{cc}3^{n} & n 3^{n-1} \\ 0 & 3^{n}\end{array}\right)$. Proof by induction on n. Base case, $n=1$, $\left(\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right)^{1}=\left(\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right)=\left(\begin{array}{cc}3^{1} & 1 \cdot 3^{0} \\ 0 & 3^{1}\end{array}\right)$. We now assume $S(n)$; that is, $\left(\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right)^{n}=\left(\begin{array}{cc}3^{n} n 3^{n-1} \\ 0 & 3^{n}\end{array}\right)$. Now, $\left(\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right)^{n+1}=\left(\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right)\left(\begin{array}{ll}3 & 1 \\ 0 & 1\end{array}\right)^{n}=\left(\begin{array}{cc}3 & 1 \\ 0 & 3\end{array}\right)\left(\begin{array}{cc}3^{n} n 3^{n-1} \\ 0 & 3^{n}\end{array}\right)=\left(\begin{array}{cc}3^{n+1} & 3 n 3^{n-1}+3^{n} \\ 0 & 3^{n+1}\end{array}\right)=$ $\left(\begin{array}{cc}3^{n+1} & (n+1) 3^{n} \\ 0 & 3^{n+1}\end{array}\right)$. This proves $S(n+1)$.

Problem 10. For an arbitrary set of numbers S, recall that x is a unit if there is some y such that $x y=1$. Prove that the product of two units is a unit.
Suppose that x, x^{\prime} are any two units. We want to prove that their product $x x^{\prime}$ is also a unit. Because x, x^{\prime} are units, there are numbers y, y^{\prime} where $x y=1=x^{\prime} y^{\prime}$. Now, set $z=y^{\prime} y$, a number. We have $\left(x x^{\prime}\right) z=x x^{\prime} y^{\prime} y=x\left(x^{\prime} y^{\prime}\right) y=x(1) y=x y=1$. Hence there is a number (namely z) such that $\left(x x^{\prime}\right) z=1$, so $x x^{\prime}$ is a unit.

